Carsharing auf der Basis von Cloud und KI

News

Staus, Parkplatzmangel und Luftverschmutzung – in vielen Städten ist das Verkehrsaufkommen regelmäßig zu hoch.


Nicht nur das Wissenschaftszentrum Berlin für Sozialforschung geht davon aus, dass flexibles Carsharing dazu beitragen könnte, den privaten Autobesitz zu reduzieren. Damit könnten diese Probleme gemildert werden.

Die Volkswagen AG hat mit der UMI Urban Mobility International GmbH eine Tochter gegründet, die Mobilitätsdienste entwickelt. Gestartet ist UMI mit WeShare, einem Angebot für das sogenannte Free-Floating-Carsharing: Kunden mieten Autos per Smartphone-App an und können sie innerhalb des Stadtgebiets wieder abstellen. Alle Parkgebühren sind inklusive, die Abrechnung erfolgt nach genutzten Minuten. Ziel des Dienstes: Die Zahl der Autos, die heute durch städtische Straßen fahren, zu reduzieren und die verbleibenden Fahrzeuge effizienter zu nutzen.

WeShare: Mit Cloud-Diensten in sechs Monaten bis zur Marktreife

Flexibel und effizient sind nicht nur die Dienstleistungen von Mobilitätsunternehmen, sondern auch deren Arbeitsweise. Bei UMI vergingen nur sechs Monate vom ersten Arbeitstag der ersten IT-Mitarbeiter*innen, bis man die ersten Autos über WeShare buchen konnte. Dieses hohe Tempo wurde ermöglicht durch effiziente Plattform-as-a-Service-Dienste (PaaS) in Microsoft Azure. Sie verkürzen die Entwicklungszyklen und die Zeit, die verstreicht, bis eine neue Produktidee oder ein neues Serviceangebot marktreif wird.

„Mit Visual Studio bietet Microsoft darüber hinaus eine moderne Entwicklungsumgebung, die in Azure DevOps integriert ist. Das ermöglicht uns eine hohe Automatisierung bei der Bereitstellung neuer Anwendungsversionen – und letzten Endes Agilität und Geschwindigkeit“, so Thomas Lassmann, CTO der UMI Urban Mobility International GmbH.

Mobilität wird smart: Die intelligente Verteilung von Fahrzeugen

Zu einer effizienten Autonutzung gehört, dass jederzeit genügend Fahrzeuge verfügbar sind und nicht zu lang ungenutzt bleiben.

Um diese Verteilung der Autos zu optimieren, setzt WeShare auf Machine-Learning-Prognosen durch Microsoft Azure: Auf Basis früherer Buchungen und Informationen über das Wetter oder Veranstaltungen sagt ein Algorithmus voraus, an welchen Orten die Kund*innen wahrscheinlich ein Auto benötigen werden.

WeShare teilt dazu die Stadt in 50 mal 50 Meter kleine Kacheln ein. So können Mitarbeiter*innen die Autos bei Bedarf passgenau parken oder nach dem nächtlichen Laden zu denjenigen Kacheln fahren, in denen am Morgen der größte Bedarf herrscht. Diese Funktion zur Bedarfsvorhersage erkennt auch, wenn sich Fahrzeuge an Orten sammeln, an denen sie früher teilweise tagelang ungenutzt herumstanden. Das kam beispielsweise an Bahnhöfen vor.

Die Mobilität von morgen – sie sollte intelligent und effizient sein. WeShare zeigt, wie mit der Hilfe von Cloud und KI städtische Herausforderungen wie Parkplatzmangel und Staus gemildert werden können.

Weitere Informationen zu den Diensten von Microsoft Azure gibt es hier. Mehr Details zur Anwendung von Azure-Diensten bei UMI finden sich in der Microsoft Customer Story.


Wir helfen Ihnen weiter!


Wir unterstützen Sie gerne bei der Beratung und Implementierung einer Lösung zu diesem Themenbereich. Für eine Kontaktaufnahme nutzen Sie bitte unser Formular oder rufen Sie uns einfach an: +49 30 422692 0.

Zum Kontaktformular
 


nach oben